DPP-1 (Capacitor)

Video Solution on Website :-
 https://physicsaholics.com/home/courseDetails/103

Video Solution on YouTube:-
 https://youtu.be/uPzt1E0GvLY

Written Solution on Website:-

Q 1. Capacitance of following combination of spheres are $\mathrm{C}_{1}, \mathrm{C}_{2} \& \mathrm{C}_{3}$

(a) $\mathrm{C}_{2}>\mathrm{C}_{1}$
(b) $\mathrm{C}_{1}>\mathrm{C}_{3}$
(c) $\mathrm{C}_{1}>\mathrm{C}_{2}$
(d) $C_{3}>C_{2}$

Q 2. Capacity of a spherical capacitor is C_{1} when inner sphere is charged and outer sphere is earthed and C_{2} when inner sphere is earthed and outer sphere is charged. Then $\frac{C_{1}}{C_{2}}$ is $:(\mathrm{a}=$ radius of inner sphere, $b=$ radius of outer sphere)
(a) 1
(b) $\frac{a}{b}$
(c) $\frac{b}{a}$
(d) $\frac{a+b}{a-b}$

Q 3. Three conducting spheres A, B and C are as shown in figure. The radii of the spheres $a r e a, b$ and c respectively. A and B are connected by a conducting wire. The capacity of the system is between A and C is:

(a) $4 \pi \varepsilon_{0}(a+b+c)$
(b) $4 \pi \varepsilon_{0}\left(\frac{b c}{c-b}\right)$
(c) $4 \pi \varepsilon_{0}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)$
(d) $4 \pi \varepsilon_{0}\left(\frac{a b c}{a b+b c+c a}\right)$

Q 4. An air capacitor consists of two parallel plates A and B as shown in the figure. Plate A is given a charge Q and plate B is given a charge $3 Q$. P is the median plane of the capacitor. If C_{0} is the capacitance of the capacitor, then:

(a) $V_{P}-V_{A}=\frac{Q}{4 C_{0}}$
(b) $V_{P}-V_{A}=\frac{Q}{2 C_{0}}$
(c) $V_{P}-V_{A}=\frac{Q}{C_{0}}$
(d) $V_{P}-V_{A}=-\frac{Q}{4 C_{0}}$

Q 5. A capacitor of capacitance C is charged to a potential difference V from a cell and then disconnected from it. A charge $+Q$ is now given to its positive plate. The potential difference across the capacitor is now
(a) V
(b) $\mathrm{V}+\frac{Q}{C}$
(c) $V+\frac{Q}{2 C}$
(d) $\vee-\frac{Q}{C}$, if $\vee<C V$

Q 6. A, B and C are three large, parallel conducting plates, placed horizontally. A and C are rigidly fixed and earthed. B is given some charge. Under electrostatic and gravitational forces, B may be

(a) in equilibrium midway between A and C
(b) in equilibrium if it is closer to A than to C
(c) in equilibrium if it is closer to C than to A
(d) B cannever be in stable equilibrium

Q 7. In an isolated parallel-plate capacitor of capacitance C, the four surfaces have charges Q_{1}, Q_{2}, Q_{3} and Q_{4}, as shown. The potential difference between the plates is

(a) $\frac{Q_{1}+Q_{2}}{C}$
(b) $\left|\frac{Q_{2}}{C}\right|$
(c) $\left|\frac{Q_{3}}{C}\right|$
(d) $\frac{1}{C}\left[\left(\mathrm{Q}_{1}+\mathrm{Q}_{2}\right)-\left(\mathrm{Q}_{3}-\mathrm{Q}_{4}\right)\right]$

Q 8. Two metallic spheres of radii a and b are separated by a distance d as shown in figure. the capacity of the system is (assuming d is very large in comparison to a and b) -

(a) $4 \pi \epsilon 0 /(1 / a+1 / b-2 / d)$
(b) $2 \pi \in 0 /(1 / a-1 / b+1 / d)$
(c) $4 \pi \epsilon 0 /(1 / a+1 / b-1 / d)$
(d) $4 \pi \in 0(a+b)$

Q 9. Two thin long parallel conductor cylindrical wires of radius a have distance b between their axes. Their capacitance per unit length is
(a) $\frac{\pi \epsilon_{0}}{\ln \left(\frac{b}{a}\right)}$
(b) $\frac{2 \pi \epsilon_{0}}{\ln \left(\frac{b}{a}\right)}$
(c) $\frac{4 \pi \epsilon_{0}}{\ln \left(\frac{b}{a}\right)}$
(d) $\frac{a b \pi \epsilon_{0}}{b-a}$

Q 10. If charge on positive plate of parallel plate capacitoris Q and electric field between plates is E, electrostatic force on positive plate will be
(a) QE
(b) QE/2
(c) $\mathrm{QE} / 4$
(d) QE/8

Q 11. Keeping potential difference between plates constant ifwe increase distance between parallel plate capacitor to two times, electrostatic force between plates will become
(a) 2 times of initial value
(b) 4 times of initial value
(c) $1 / 4$ times of initial value
(d) $1 / 2$ times of initial value

Answer Key

Q. 1 a, d	Q. 2 b	Q. 3 b	Q. 4 b	Q. 5 c
Q. 6 b, d	Q. 7 b, c	Q. 8 a	Q. 9 a	Q. 10 b
Q. 11 c				

© India's Best Educators
© Interactive Live Classes
© Structured Courses \& PDFs
© Live Tests \& Quizzes
\times Personal Coach \times Study Planner

No cost EMI ₹56,000

18 months

No cost EMI

12 months
No cost EMI

6 months
No cost EMI
₹28,000

To be paid as a one-time payment
View all plans

PHYSICSLIVE

© India's Best Educators
© Interactive Live Classes
© Structured Courses \& PDFs
© Live Tests \& Quizzes
\times Personal Coach
Study Planner

To be paid as a one-time payment View all plans
Use code PHYSICSLIVE to get 10\% OFF on Unacademy PLUS.

Written Solution

DPP- 1 Capacitor: Capacitance of different types of capacitors, Force between plates of Parallel Plate capacitor
By Physicsaholics Team
(Q.1) Capacitance of following combination of spheres are $\mathrm{C}_{1}, \mathrm{C}_{2} \& \mathrm{C}_{3}$ in C_{1} There will be no charge on inner sphera. $C_{1}=4 \pi \in u R=4 \pi t \in x 15 a$
(a) $\mathrm{C}_{2}>\mathrm{C}_{1}$

$$
=\text { grieua }
$$

(c) $\mathrm{C}_{1}>\mathrm{C}_{2}$
(b) C_{3}

$$
\begin{aligned}
& C_{2}=\frac{4 \pi \in a b}{b-a}=\frac{4 \pi \in-x a \times 1.5 a}{.5 a}=6 \pi \epsilon_{0} a \\
& C_{3}=\frac{4 \pi \in+b^{2}}{b-a}=\frac{4 \pi \epsilon 0 \times 1.5 \times 1.5 a}{.5 a}=18 \pi \epsilon u a
\end{aligned}
$$

(Q.2) Capacity of a spherical capacitor is C_{1} when inner sphere is charged and outer sphere is earthed and C_{2} when inner sphere is earthed and outer sphere is charged. Then $\frac{C_{1}}{C_{2}}$ is : $(\mathrm{a}=$ radius of inner sphere, $\mathrm{b}=$ radius of outer sphere $)$
(a) 1
(b) $\frac{a}{b}$
(c) $\frac{b}{a}$
(d) $\frac{a+b}{a-b}$

$$
C_{1}=\frac{4 \pi c_{4} b}{b-a}
$$

(Q.3) Three conducting spheres A, B and C are as shown in figure. The radii of the spheres are a, b and c respectively. A and B are connected by a

There wild be no charge on A.
Capacitance between $A \& C$ is
(a) $4 \pi \varepsilon_{0}(a+b+c)$
(b) $4 \pi \varepsilon_{0}\left(\frac{b \varepsilon}{(a b b}\right)$
(c) $4 \pi \varepsilon_{0}\left(\frac{1}{a}+\frac{1}{2}+\frac{1}{c}\right)$
 equal to Capaeitanos between B \&C

$$
=\frac{4 T \epsilon_{0} b s}{c-b}
$$

(Q.4) An air capacitor consists of two parallel plates A and B as shown in the figure. Plate A is given a charge Q and plate B is given a charge 3 Q . P is the median plane of the capacitor. If C_{o} is the capacitance of the capacitor, then:
(a) $V_{P}-V_{A}=\frac{Q}{4 C_{0}}$
(D) $V_{P}-V_{A}=\frac{2}{2 c_{0}}$
(c) $V_{P}-V_{A}=\frac{Q}{c_{0}}$

$$
V_{P}-V_{A}=\frac{1}{2}\left(V_{B}-V_{A}\right)=\frac{Q}{2 \epsilon_{0}}
$$

(Q.5) A capacitor of capacitance C is charged to a potential difference V from a cell and then disconnected from it. A charge $+Q$ is now given to its positive plate. The potential difference across the capacitor is now
Only facing surfaces behave as capacitors
(a) V
(b) $X+\frac{0}{c}$
(c) $\mathrm{V}+\frac{Q}{2 C}$

$$
\begin{aligned}
\text { Potential difference } & =\frac{C V+Q / 2}{C} \\
= & V+Q / 2 C
\end{aligned}
$$

(Q.6) A, B and C are three large, parallel conducting plates, placed horizontally. A and C are rigidly fixed and earthed. B is given some charge. Under electrostatic and gravitational forces, B may be

$$
\Delta V_{A B}=\Delta V_{C B}=V
$$

(a) in equilibrium midway between A and C
(b) in equilibrium if it is closer to A than to C
(c) in equilibrium if it is closer to C than to A
(I) B can never be in stable equilibrium

$q=C V=\frac{A \in O}{d} V \Rightarrow$ low, high V; high force.
for equilibrium $F_{1}>F_{2} \Rightarrow d_{1}<d_{2}$
$\Rightarrow B$ is closer to A.
(Q.7) In an isolated parallel-plate capacitor of capacitance C , the four surfaces have charges $\mathrm{Q}_{1}, \mathrm{Q}_{2}, \mathrm{Q}_{3}$ and Q_{4}, as shown. The potential difference between the plates is

$$
Q_{1}=Q_{n} \quad \& \quad Q_{2}=-Q_{3}
$$

(a) $\frac{Q_{1}+Q_{2}}{C}$
(b) $\psi_{C}^{\frac{Q_{2}}{C}}$
(d) $\frac{1}{c}\left[\left(Q_{1}+Q_{2}\right)-\left(Q_{3}-Q_{4}\right)\right]$
(c) $\left|\frac{Q_{3}}{C}\right|$

Since only inner surfaces behave as capacitor

$$
V=\left|\frac{Q_{2}}{c}\right|=\left|\frac{Q_{3}}{c}\right|
$$

(Q.8) Two metallic spheres of radii a and b are separated by a distance d as shown in figure. the capacity of the system is (assuming) d is very large in comparison to a and b) -
(a) $4 \pi \in 0 /(1 / a+1 / b-2 / d)$
(b) $2 \pi \in 0 /(1 / a-1 / b+1 / d)$
(c) $4 \pi \in 0 /(1 / a+1 / b-1 / d)$

(d) $4 \pi \in q(a+b)$

$$
\begin{aligned}
& \text { (d) } 4 \pi \in 0(a+b) \\
& V=V_{A}-V_{B}=\frac{-q}{4 \pi G_{B}}+\frac{q}{4 \pi \epsilon_{0} d}\left(\frac{1}{a}+\frac{1}{b}-\frac{2}{d}\right) \\
& C=4 \pi \in 0 \% \frac{1}{a}+\frac{1}{b}-\frac{2}{d}
\end{aligned}
$$

(Q.9) Two thin long parallel conductor cylindrical wires of radius a have distance
b between their axes. Their capacitance per unit length is

$$
\lambda=\omega / l
$$

field due to tee wire only
(a) $\frac{\pi \epsilon_{0}}{\ln \left(\frac{b}{a}\right)}$

$$
E=\frac{2 k \delta}{\gamma}
$$

ΔV due to tva cire only
(c) $\frac{4 \pi \epsilon_{0}}{\ln \left(\frac{b}{a}\right)}=\int_{a}^{b^{2}} \frac{b^{2} \lambda}{\gamma} d r$
(d) $\frac{a b \pi \epsilon_{0}}{b-a}$

$$
\text { Total P.D }=\frac{\frac{2 k \delta}{\gamma \delta} \ln (b / a)}{e \gamma} \ln (b / a) \Rightarrow C=\frac{\operatorname{lr}}{4 \pi \ln (b / a)}
$$

(Q.10) If charge on positive plate of parallel plate capacitor is Q and electric field between plates is E , electrostatic force on positive plate will be
(a) QE

$$
E=\frac{Q_{D}}{R A t_{D}}
$$

(b) QE/2
(c) $\mathrm{QE} / 4$

$$
N=\frac{Q^{2}}{2 A E_{0}}=Q\left(\frac{Q}{2 A \epsilon_{0}}\right)
$$

$$
\int \frac{Q E}{2}
$$

(Q.11) Keeping potential difference between plates constant if we increase distance between parallel plate capacitor to two times , electrostatic force between plates will become
(a) 2 times of initial value
(b) 4 times of initial value
(c) $1 / 4$ times of initial value
(d) $1 / 2$ times of initial value

For Video Solution of this DPP, Click on below link

Video Solution on Website:-
https://physicsaholics.com/home/courseDetails/10 3

Video Solution on YouTube:-

Written Solution on Website:-

Chalo Nikis

