

DPP-1 (Capacitor)

Video Solution on Website :-

Video Solution on YouTube:-

https://youtu.be/uPzt1E0GvLY

https://physicsaholics.com/home/courseDetails/103

Written Solution on Website:- https://physicsaholics.com/note/notesDetalis/63

Q 1. Capacitance of following combination of spheres are C_1 , C_2 & C_3

- Q 2. Capacity of a spherical capacitor is C_1 when inner sphere is charged and outer sphere is earthed and C_2 when inner sphere is earthed and outer sphere is charged. Then $\frac{C_1}{C_2}$ is : (a = radius of inner sphere, b = radius of outer sphere) (a) 1 (b) $\frac{a}{b}$ (c) $\frac{b}{a}$ (d) $\frac{a+b}{a-b}$
- Q 3. Three conducting spheres A, B and C are as shown in figure. The radii of the spheres are a, b and c respectively. A and B are connected by a conducting wire. The capacity of the system is between A and C is:

Q 4. An air capacitor consists of two parallel plates A and B as shown in the figure. Plate A is given a charge Q and plate B is given a charge 3Q. P is the median plane of the capacitor. If C_0 is the capacitance of the capacitor, then:

(a)
$$V_P - V_A = \frac{Q}{4C_0}$$

(b) $V_P - V_A = \frac{Q}{2C_0}$
(c) $V_P - V_A = \frac{Q}{C_0}$
(d) $V_P - V_A = -\frac{Q}{4C_0}$

Q 5. A capacitor of capacitance C is charged to a potential difference V from a cell and then disconnected from it. A charge +Q is now given to its positive plate. The potential difference across the capacitor is now

(a) V
(b)
$$V + \frac{Q}{c}$$

(c) $V + \frac{Q}{2c}$
(d) $V - \frac{Q}{c}$, if $V < CV$

Q 6. A, B and C are three large, parallel conducting plates, placed horizontally. A and C are rigidly fixed and earthed. B is given some charge. Under electrostatic and gravitational forces, B may be

(a) in equilibrium midway between A and C(b) in equilibrium if it is closer to A than to C(c) in equilibrium if it is closer to C than to A(d) B can never be in stable equilibrium

Q 7. In an isolated parallel-plate capacitor of capacitance C, the four surfaces have charges Q_1 , Q_2 , Q_3 and Q_4 , as shown. The potential difference between the plates is

Q 8. Two metallic spheres of radii a and b are separated by a distance d as shown in figure. the capacity of the system is (assuming d is very large in comparison to a and b) –

(a) $4\pi\epsilon 0/(1/a + 1/b - 2/d)$ (b) $2\pi\epsilon 0/(1/a - 1/b + 1/d)$ (c) $4\pi\epsilon 0/(1/a + 1/b - 1/d)$ (d) $4\pi\epsilon 0(a + b)$

Q 9. Two thin long parallel conductor cylindrical wires of radius a have distance b between their axes. Their capacitance per unit length is

(b) $\frac{1}{ln\left(\frac{b}{a}\right)}$ (d) $\frac{ab\pi\epsilon_0}{b-a}$

(a)	$\pi\epsilon_0$
(a)	$ln(\frac{b}{a})$
	(n(a)
(c)	$4\pi\epsilon_0$
(U)	$ln(\frac{b}{2})$
	(a)

- Q 10. If charge on positive plate of parallel plate capacitor is Q and electric field between plates is E, electrostatic force on positive plate will be
 - (a) QE
 - (b) QE/2
 - (c) QE/4 (d) QE/8
 - (a) QE/8
- Q 11. Keeping potential difference between plates constant if we increase distance between parallel plate capacitor to two times electrostatic force between plates will become (a)2 times of initial value

(b) 4 times of initial value

- (c) 1/4 times of initial value
- (d) $\frac{1}{2}$ times of initial value

Q.1 a, d	Q.2 b	Q.3 b	Q.4 b	Q.5 c
Q.6 b, d	Q.7 b, c	Q.8 a	Q.9 a	Q.10 b
Q.11 c				

PRATIES ALANA PHYSICS ALA

× ×	PLUS India's Be Interactiv Structure Live Tests Personal Study Pla	ICONIC ** est Educators ve Live Class d Courses & s & Quizzes Coach inner	s es PDFs		
24 months No cost EMI		₹2,3	333/mo ₹56,000	>	
18 months No cost EMI		₹2,6	525/mo ₹47,250	>	
12 months No cost EMI		₹3,2	2 08/mo ₹38,500	>	
6 months No cost EMI		₹4,6	667/mo ₹28,000	>	
To be paid as a one-time payment View all plans					
Add a re	ferral cod	e		APPLY	

PHYSICSLIVE

Use code PHYSICSLIVE to get 10% OFF on Unacademy PLUS.

	PLUS	ICONIC *		
× × ×	India's Be Interactiv Structure Live Tests Personal Study Pla	est Educators ve Live Classes ed Courses & PDFs s & Quizzes Coach		
140				
24 months No cost EMI		₹2,100/m d +10% OFF ₹50,400	° >	
18 months No cost EMI		₹2,363/m d +10% OFF ₹42,52	b > 5	
12 months No cost EMI		₹2,888/m d +10% OFF ₹34,650	° >	
6 months No cost EMI		₹4,200/m d +10% OFF ₹25,200	° >	
To be paid as a one-time payment				
Awesome! PHYSICSLIVE code applied X				

Written Solution

- DPP-1 Capacitor : Capacitance of different types of capacitors, Force between plates of Parallel Plate capacitor
- **By Physicsaholics Team**

(Q.2) Capacity of a spherical capacitor is C_1 when inner sphere is charged and outer sphere is earthed and C_2 when inner sphere is earthed and outer sphere is charged. Then $\frac{C_1}{C_2}$ is : (a = radius of inner sphere, b = radius of outer sphere) a+b(a) 1 C

(Q.3) Three conducting spheres A, B and C are as shown in figure. The radii of the spheres are a, b and c respectively. A and B are connected by a conducting wire. The capacity of the system is between A and C in the conduction of the system is between A and C in the capacity of the capacity of the system is between A and C in the capacity of the capacity of the system is between A and C in the capacity of the c

There will be no charge on A Cabacitance between 48 (a) $4\pi\varepsilon_0(a+b+c)$ $(b) 4\pi \varepsilon_{0}$ *ábc* (c) $4\pi\varepsilon_0$ $4\pi\varepsilon_0$ ab+bc+cabetween B &C lq na, (abaci) 4 TIEU bG

(Q.4) An air capacitor consists of two parallel plates A and B as shown in the figure. Plate A is given a charge Q and plate B is given a charge 3Q. P is the median plane of the capacitor. If C_0 is the capacitance of the capacitor, then:

(Q.5) A capacitor of capacitance C is charged to a potential difference V from a cell and then disconnected from it. A charge +Q is now given to its positive plate. The potential difference across the capacitor is now

Phly facing surfaces behave as capacitor. Ohly (a) V $-\frac{Q}{C}$, if V? CV+Q/2= V + 9/2C

(Q.6) A, B and C are three large, parallel conducting plates, placed horizontally.A and C are rigidly fixed and earthed. B is given some charge. Under electrostatic and gravitational forces, B may be

 $\Delta V_{AB} = \Delta V_{cB} = V$

(a) in equilibrium midway between A and C
(b) in equilibrium if it is closer to A than to C
(c) in equilibrium if it is closer to C than to A
(d) B can never be in stable equilibrium

q=CV = Ato V = lowd, high q i high force.
for equilibrium
$$F_1 > F_2 = J d_1 < d_2$$

 $\pm B$ is closer to A.

(Q.7) In an isolated parallel-plate capacitor of capacitance C, the four surfaces have charges Q_1 , Q_2 , Q_3 and Q_4 , as shown. The potential difference between the plates is

(Q.8) Two metallic spheres of radii a and b are separated by a distance d as shown in figure. the capacity of the system is (assuming d is very large in comparison to a and b) -(a) $4\pi \in 0/(1/a + 1/b - b)$ (b) $2\pi \in 0/(1/a - 1/b +$ TIEn 9 4TIGud A (c) $4\pi \in 0/(1/a +$ 1/d) (d) $4\pi \in \mathfrak{o}(a+b)$ 4TIGod LITEUD $V = V_{(4} - V_{B})$ = 4 Ficea

(Q.9) Two thin long parallel conductor cylindrical wires of radius a have distance b between their axes. Their capacitance per unit length is field due to the wire only 2KS $2\pi\epsilon_0$ L Ъ due $ab\pi\epsilon_0$ $4\pi\epsilon_0$ (c) b-abla (6/4 4118 AKay Total P. b/4)

(Q.10) If charge on positive plate of parallel plate capacitor is Q and electric field between plates is E, electrostatic force on positive plate will be

(Q.11) Keeping potential difference between plates constant if we increase distance between parallel plate capacitor to two times ,electrostatic force between plates will become

60

(a) 2 times of initial value (b) 4 times of initial value (c) 1/4 times of initial value (d) $\frac{1}{2}$ times of initial value (d) $\frac{1}{2}$ times of initial value (e) $\frac{1}{2}$ times of initial value (f) $\frac{1}{2}$ times of initial value (h) $\frac{1}{2}$ t

For Video Solution of this DPP, Click on below link

Video Solution on Website:-

https://physicsaholics.com/home/courseDetails/10 3

Video Solution on YouTube:-

https://youtu.be/uPzt1E0GvLY

Written Solution on Website:-

https://physicsaholics.com/note/notesDetalis/63

@Physicsaholics_prateek

@<u>NEET_Physics</u> @<u>IITJEE_Physics</u>

physicsaholics.com

Unacademy

